

Eurographics/ IEEE-VGTC Symposium on Visualization 2010 Volume 29 (2010), Number 3
G. Melançon, T. Munzner, and D.Weiskopf (Guest Editors)

Visualization and Analysis-Oriented
Reconstruction of Material Interfaces

Jeremy S. Meredith1 and Hank Childs2

1Oak Ridge National Laboratory, USA
2Lawrence Berkeley National Laboratory and University of California, Davis, USA

Abstract
Reconstructing boundaries along material interfaces from volume fractions is a difficult problem,
especially because the under-resolved nature of the input data allows for many correct interpretations.
Worse, algorithms widely accepted as appropriate for simulation are inappropriate for visualization. In
this paper, we describe a new algorithm that is specifically intended for reconstructing material interfaces
for visualization and analysis requirements. The algorithm performs well with respect to memory
footprint and execution time, has desirable properties in various accuracy metrics, and also produces
smooth surfaces with few artifacts, even when faced with more than two materials per cell.

Categories and Subject Descriptors: I.3.6 [Computer Graphics] Methodology and Technologies

1 Introduction

Many important classes of computer simulations of
physical phenomena require support for “materials,” i.e.
discrete regions of space with different physical properties.
For example, a simulation of tidal waves needs to partition
space into water and air, and a simulation of an automobile
accident must model glass, metal, and rubber. There are
two approaches to supporting materials on a computational
mesh: Lagrangian (where each cell contains exactly one
material for the entire simulation) and Eulerian (where the
materials are allowed to flow through the mesh). Although
the Lagrangian approach is simpler to implement, the
Eulerian approach is often used because of its flexibility.
The Eulerian approach is ideal for computations requiring a
static mesh while materials move, for materials that bend
and twist so significantly that they can’t be represented
easily with normal mesh elements, or simply to model
materials at a higher resolution than the mesh to maintain
accuracy. The result is that cells in the computational mesh
will be “mixed,” i.e. containing two or more materials.

Figure 1: Original problem materials (left) and the volume
fractions of the blue material in each cell (right).

Material information is stored on a per-cell basis, with a
scalar for each material representing the “volume fraction”
(VF) for that material, i.e. the percent of the cell occupied
by that material. Figure 1 shows an example of three
materials in two-dimensional space along with a nine-cell
computational grid, as well as the VFs in each cell for the
upper-most (blue) material. In this example, the four cells
with a blue VF of 1.0 are “clean,” containing only the blue

material, and the three cells with a VF between 0 and 1 are
mixed and should contain the interface of the blue material.

There are multiple “correct” solutions and many criteria
for a good reconstruction: Does it honor the volume
fractions? Does it place materials from neighboring cells
next to each other? Does it create large discontinuities?
Although simulations reconstruct interfaces themselves,
their primary concerns include advecting materials through
the mesh correctly or specific physical properties like
conservation of mass, not visualization and analysis. Their
reconstructions often lead to inaccurate analysis and poor
aesthetics. In this paper, we introduce a new algorithm that
is well suited for visualization and analysis.

The rest of the paper is organized as follows. In section 2,
we describe previous work in this area. Section 3 describes
our new approach and variations therein. In section 4, we
perform a comparative evaluation with several other types
of interface reconstruction techniques, and we present paths
for future work and our conclusions in section 5.
2 Previous work

One of the first techniques for material interface
reconstruction (MIR) is a method that uses tracking
particles to define the interface [Ams66]. Later methods
tracked interfaces using level set methods [OS88]. An early
method for creating linear geometric material boundaries
out of volume fractions arose in the simple line interface
calculation (SLIC) [NW76] and volume-of-fluid (VOF)
method [HN81]. SLIC and VOF are piecewise-
constant/stair-stepped algorithms, aligning material
interface boundaries with one of the major coordinate axes.
An improvement to these approaches came in the piecewise
linear interface calculation (PLIC) [PY92], which loops
over the materials in each cell, first choosing an orientation
then finding the intersection position which results in the
correct VF. By supporting non-axis aligned orientations,
PLIC removed one of the major obstacles to a more realistic
reconstruction. Modifications to the basic PLIC algorithm
include the ordering of materials and method for calculating

 J.S. Meredith and H. Childs / Visualization and Analysis-Oriented Reconstruction of Material Interfaces

interface orientations [AS07]. Again, these methods are
largely concerned with not merely the reconstruction of the
material interfaces but also the roles these interfaces play in
simulation codes, such as tracking and propagating the
surface following physical laws, and thus often neglect
features important for visualization and analysis.

Other algorithms have been devised which are more
applicable for analysis and visualization. One algorithm
implemented in visualization programs is an isosurface
algorithm, which creates surfaces based on interpolated
volume fraction values, either on re-centered values or on a
dual mesh. [RBW99] This approach generates smooth
surfaces, but has serious flaws in supporting multiple
materials. Bonnell et al. describe an approach which
remaps geometry into barycentric coordinate space, leading
to more accurate reconstructions for more than two
materials [BJH*00]. However, when faced with additional
materials, the output has a high geometric complexity and
the algorithm only applies to triangle/tetrahedral grids. The
algorithm described by [AGD*08] subdivides cells into a
discretized grid and iteratively shifts material sub-voxels to
minimize an energy function, generating good results with
fixed error bounds. However, the subdivision is expensive
in output complexity and performance time. Further, the
output is restricted to generating axis-aligned boundary
surfaces. Another category of approaches could be
described as multi-material marching cubes variants
[WS03, BL03, HSS*97], but these approaches add too
many constraints, such as requiring material choices to be
made at each corner, or supporting intersections only at
edge midpoints. Finally, the algorithm described in this
paper represents a significant extension to and analysis of
the algorithm described in [Mer04], in particular adding an
iterative step to improve accuracy and an analysis
comparing its effectiveness to other algorithms.
3 Algorithm description

3.1 Core algorithm

Figure 2: Volume fractions for each material (left) are
averaged to the vertices of the mesh (right).
The algorithm begins by averaging the material VFs to the
mesh vertices. This ultimately enables continuity since the
algorithm depends on volume fractions along cell edges,
and each edge will now have the same starting values,
regardless of which adjacent cell we are reconstructing. We
illustrate each step of our algorithm with an example where
we study the reconstruction on the central cell of a nine-cell
grid with three materials: blue, red, and yellow. The first
step, seen in Figure 2, demonstrates the averaging step.

Our algorithm deals with multiple materials in a cell by

adding each material one at a time. Each cell is initialized
with a single material, then, when adding each successive
material, it splits out portions of the cell to belong to the
new material. Figure 3 shows the first iteration in this
process. The center cell has been initialized to be yellow
and we demonstrate how a second material (red) is added.
This is done in two steps: evaluation and reconstruction.
For the evaluation step, we focus on the two selected
materials (red and yellow) and ignore all other materials
(blue). For each edge in the cell, we test to see if there is a
location along the edge where the interpolated VFs of the
materials are equal. In our example, the red and yellow
materials’ interpolated VFs are equal near the top of the left
edge, where both have a value of approximately 0.087, and
near the middle of the bottom edge, where both have a
value of approximately 0.336.

Figure 3: Intersection points for red/yellow evaluation
(left) and the clipped volumes (right).

If an edge contains an intersection point, we split this edge
into two new edges: yellow (for the new edge incident to
the yellow-dominant vertex) and red (for the new edge
incident to the red-dominant vertex). After the edge splits,
we perform the actual reconstruction. In two dimensions,
the output is made up of polygons, each containing a single
material (red or yellow). The vertices of a yellow triangle,
for example, will consist of only yellow-dominant vertices
or intersection points. We have implemented two variants,
one of which operates only on triangles and requires the
input to be triangulated, and one which can input and output
both triangles and quadrilaterals. The rules for
reconstruction are table-based and resemble a Marching
cubes table for isosurfacing [LC87]. Further, when
considering only two materials (as we have so far) the
resemblance to isosurfacing extends to the entire algorithm.
This includes ambiguities that may arise for cases where
dominant nodes are diagonal from each other (e.g. red-
dominant upper left and lower right, yellow-dominant upper
right and lower left). We handle these ambiguities by
choosing one material to span the middle and the other to
get separated, again much like an isosurface algorithm.

3.1.1 Three dimensional extension
Our three dimensional case is similarly done by table,

although we have again implemented two variants. In the
first variant, we must tetrahedralize the input and then
group output vertices of the same material together, along
with neighboring intersection points, into one or more
tetrahedrons. In the second variant, we leave the input cells
whole and strive to reduce the number of output cells by
grouping tetrahedrons together into pyramids, wedges, and
hexahedrons when possible. We refer to this as the “zoo”
variant since it uses the elements of the finite element zoo.

 J.S. Meredith and H. Childs / Visualization and Analysis-Oriented Reconstruction of Material Interfaces

Once again like a Marching Cubes algorithm, we have
worked out all 2n cases for each n-node primitive so that a
simple table lookup determines the output shapes for each
reconstruction step. To illustrate the difference between the
tetrahedron and “zoo” variants, consider the case of a
hexahedron that has four yellow dominant nodes in its top
half and four red dominant nodes in its bottom half. The
tetrahedral variant would need ten or more tetrahedrons to
represent the reconstruction, while the zoo variant would do
it with two hexahedrons. This fact has implications for
surface smoothness we explore later. Note that three-
dimensional reconstruction introduces a new problem: as
the faces of the original cell are being divided into triangles
and quadrilaterals, it is important that the neighboring cell
makes matching decisions regarding how it divides the
same face. Otherwise, the output mesh connectivity will be
incorrect. This potential problem is prevented through
careful selection of the table entries and consistent indexing
of shared cell edges. See [VISIT2] for source code.

3.1.2 Isosurfaces and equisurfaces
For a two-material problem, the boundary between the

reconstructed materials is indeed an isosurface of value 0.5.
However, this boundary is not technically an isosurface.
An isosurface is a surface of constant value. Our surface is
rather a surface where the volume fractions of two materials
are equal. When there are more than two materials, the
value along the boundary will vary. Figure 3 demonstrates
this, as the boundary has interpolated VFs ranging from
0.087 to 0.336. In recognition of this key difference from an
isosurface, we refer to this surface as an “equi-surface.”

3.1.3 Reincorporation of Additional Materials

Figure 4: Evaluating the third (blue) material against the
first (yellow) and second (red) materials.

At this stage, we now have two output cells, one for each
material visited. We take each of these cells and evaluate it
against the next material (the blue one) as seen in Figure 4.
To do so, note that we must have values at all nodes for the
blue material as well, and as such must also interpolate VF
values for our blue material to the new node locations. This
is where the process repeats: we clip our yellow cell from
the previous step into a blue and a yellow cell, and the red
cell into a blue and a red cell. As mentioned, we have two
variants of this clipping process: one which outputs two
triangles for the red material in Figure 4, for example, and
the other which outputs a single quadrilateral.

Note that by construction, the edges of these two new blue
material cells must meet each other at the exact same
points. This same phenomenon occurs at edges between
cells, and for this reason this algorithm guarantees
continuity for all material interfaces. The results of the
reconstruction are shown in Figure 5. Note this algorithm is
applicable to any cell type, although we depend on a table

that covers the 2n intersection cases (for cells with n points).

Figure 5: The final reconstruction for all three materials.

3.2 Global iteration scheme
As described in section 3.1, our algorithm makes use of

volume fractions only implicitly, using them not as a hard
criterion, but as input to a process which uses them as
values to define geometric clipping planes. However, there
is still a direct correlation between the two: for example, a
larger input volume fraction of a material will result in the
generated volume for that material being larger. We will
explore the actual correspondence between input and output
volume fractions in Section 4, but we will note here simply
that the relationship is not necessarily a trivial linear one:
as can even be seen in the example three-material diagrams
above, there are many circumstances in which the input and
output VFs are not an exact match.

However, we can use this proportionality between input
and output volume fractions to improve our scheme. The
process we use is one of a global iterative modification of
the VFs used as input to the reconstruction. Specifically:
1. Initialize the reconstruction algorithm VF input values to

the desired VFs (i.e. the VFs from the original data set).
2. Perform the reconstruction using the current input VFs.
3. Calculate the output VFs achieved by the reconstruction.
4. For each material in each cell, modify the input VF by

some percentage of the difference between the desired
VF and the achieved output VF.

5. Repeat steps #2, #3, and #4 until iteration stops.

For example, suppose our data has a VF of 0.2 material A
and 0.8 material B in some cell, but we achieve 0.1 and 0.9,
respectively, after our first reconstruction. With a 40%
percentage used in step 4, we will modify these target VFs
to be 0.24 and 0.76 and begin the next iteration.

Note that because modified VF values are averaged from
cells to nodes during the iteration, modifications to one cell
will affect neighboring cells. Therefore, this is not a local
adjustment and it prevents a simple analytic solution in each
cell, also removing guarantees of convergence. However,
this global aspect is necessary; without this connection
between cells, connectivity and smoothness would be lost.

In Step #4, the percentage of the VF difference used to
modify the target VFs can be thought of as a damping
factor: a larger value will approach the desired VF values
more quickly, but as such can result in oscillations which
prevent convergence at all. We have found empirically that
values between 10% and 40% generally approach the target
VFs quickly while avoiding oscillations. Also, as
convergence is not guaranteed, the scheme is most useful
with the number of iterations specified manually. We
investigate these convergence properties in Section 4.5.1.

 J.S. Meredith and H. Childs / Visualization and Analysis-Oriented Reconstruction of Material Interfaces

4 Evaluation
In this section, we compare our algorithm against other

algorithms, both visualization- and simulation-oriented.
Each of the algorithms is implemented inside the VisIt
visualization and analysis application [CBB*05], and we
use these implementations for our comparisons. These
include a piecewise-linear interface construction (“PLIC”)
algorithm, an implementation of the algorithm from
Anderson et al. [AGD*08] (“Discrete”), and a volumetric
variant of an isosurface algorithm (“Isovolume”). For our
technique which clips cells based on equi-surfaces, we
show results using both reconstruction variants: one using
the pure triangular/tetrahedral approach (“Equi-T”), and one
using a the more complete selection of cell types from the
finite element zoo (“Equi-Z”). The latter variant can utilize
our global iteration scheme with a fixed number of
iterations (e.g. “Equi-Z/i5” for five iterations). Table 1
summarizes the results of the comparative evaluation. Code
for the implementations in this paper, including the clipping
variants, are available at the VisIt web site [VISIT2]. We
explore these results in detail below in light of visualization
and analysis requirements, including overall capabilities
(4.1-4.4), accuracy (4.5-4.6), and performance (4.7-4.8).

4.1 Mesh type support
All algorithms compared here work in both two- and

three-dimensions. Furthermore, all work with regular,
structured, or unstructured data sets, with the exception of
the Discrete algorithm, which is limited to regular grids.
We use all types of data sets below, using a two-pronged
approach to evaluate these algorithms: use well-defined
synthetic test data to examine critical algorithmic features
on a small scale, and larger simulation data to evaluate the
methods in a real-world setting.

4.2 Geometric connectivity

For many geometric algorithms, good cell connectivity is
required – this is why unstructured meshes are generally not
sets of independent cells, but instead use data structures that
share points among neighboring cells. Visualization and
analysis examples requiring good connectivity include
calculating external faces of a data set or algorithms which
utilize the set of cells adjacent to a point. Not every
interface reconstruction technique is inherently capable of
generating correct connectivity.

For example, a standard PLIC algorithm generates an
interface in each cell independently of its neighbors, and the
intersection point between adjacent cells will not match up.
This means that generating a closed surface without
duplicate geometry is impossible without a complex
algorithm which can split the reconstructed geometry many

extra times. See Figure 6 for an example. In practice, this
is a major liability for using PLIC style reconstruction for
the many analysis algorithms requiring a well-defined
surface. However, for the purpose of the fairest analysis of
PLIC algorithms, we implemented a duplicate surface
geometry removal algorithm, which allows us take
measurements based on the ideal surface theoretically
achievable with PLIC-style reconstruction.

Figure 6: (a) Volumetric PLIC reconstruction. (b) Surface-
only PLIC reconstruction leaves holes. (c) Generating
surfaces from volumetric reconstructions leave duplicate
geometry. (d) An ideal result has sharp angles and requires
additional expense to generate. Duplicate partial surface
removal (d) is not a standard part of PLIC reconstructions,
we implemented it for the comparisons in this paper.

The Discrete algorithm quantizes space into sub-voxels.
As such, good connectivity is somewhat straightforward in
that the edges or faces between sub-voxels with differing
materials define the interface, but the connectivity is limited
to only axis-aligned geometry (like a rectilinear grid),
imitating some weaknesses of a SLIC algorithm.

A standard isosurface based approach that creates only
lines in two dimensions and surfaces in three dimensions
cannot be used for much analysis other than generating
images; to perform analysis on the reconstructed result
requires a more complex volumetric algorithm. And, like a
normal isosurface algorithm, this type of reconstruction can
easily generate good connectivity between adjacent cells.
However, a standard isovolume algorithm requires one pass
for each material, creating volumes at the 50% iso-level.
This is not conducive to generating connectivity between
the materials occupying a single cell, since each material’s
geometry is generated in isolation. In a two-material case
this could be remedied, as the 50% levels happen to match
up, but in general this is not possible – see the multi-
material support section (4.3) below for more details.

As described in Section 3, our algorithm shares some
similarities with an isovolume algorithm in that adjacent
cells will naturally share intersection points. However, our
approach also solves the inter-material connectivity
problem: it does not use a fixed value, but instead defines a
single point of intersection between each pair of materials.
By recursing through the materials in a pairwise evaluation,
this results in even the many-material case having
inherently correct connectivity across cells and materials.

 PLIC Discrete Isovolume-Z Equi-T Equi-Z Equi-Z/iterative
4.1 Mesh Type Support all rectilinear only all all all all
4.2 Geometric Connectivity no yes (axis-aligned) no yes yes yes
4.3 Multi Material Support yes (sensitive) yes no yes yes yes
4.4 Smooth, Low-Artifact Output no no yes partial yes yes
4.5 Volume Accuracy yes (exact) yes (bounded) no no no yes (not guaranteed)
4.6 Surface Accuracy no no yes yes yes yes
4.7 Memory Complexity moderate poor excellent moderate excellent excellent
4.8 Runtime Performance poor poor moderate excellent excellent moderate

Table 1: Summary of comparative evaluation of reconstruction algorithms.

 J.S. Meredith and H. Childs / Visualization and Analysis-Oriented Reconstruction of Material Interfaces

4.3 Multi-material support

Figure 7: Thin-shell torus test data set. Close-up of
reconstruction using (a) PLIC (b) Discrete (c) Isovolume
(d) Equi-T (e) Equi-Z (f) Equi-Z/i20.

In general, material-supporting simulation codes operate
on many materials, and so correctly supporting multiple
materials within a single cell is a key requirement for
correctness in a reconstruction algorithm. Failure can take
the form of a total inability to handle more than two
materials in one cell to a gross shape mischaracterization.
To explore this capability, we use the “Torus” data set.
This is a three-material data set, where an inner circle of the
first material is surrounded by a thin toroidal shell of a
second material, in turn surrounded by a third material as
background. This is also useful for studying the algorithms
under low-volume fraction conditions. For example, Figure
7 shows a close-up from the results of this data set
reconstructed by each algorithm. The PLIC algorithm must
reconstruct cells working from the outside-in, which means
it can potentially get the material ordering incorrect in cases
with three or more materials; this has occurred in some
cells, breaking any chance at a complete shell. The Discrete
algorithm tends to group pieces of materials together,
resulting here in uneven thickness. The Isovolume
approach misses the thin material entirely, leaving a hole
due to its lack of three-material support. Without iteration,
our new algorithm misses the thin material as well, but does
not leave a hole. When several iterations are added, our
algorithm successfully reconstructs the thin shell, leaving it
smoothly connected through the entire 360°.

4.4 Smoothness and physical realism
As previously mentioned, the material interface problem

is under-constrained. A reconstruction algorithm is free to
choose any surface within the cell as long as it reflects the
volume fractions. From a visualization standpoint, the
choice of surface within a cell is more than aesthetics; if a
jagged edge or lumpy surface is used when a smooth edge
or flat surface would have met the requirements imposed by
the volume fractions, then the reconstruction algorithm has
introduced artifacts and assumed information which did not
exist in the data. These artifacts can be distracting,
physically unrealistic, or even misleading. Thus, in the
absence of extra information, smooth or straight surfaces
are desirable, as they introduce the least new information.

Though it does manifest in some analysis calculations (such
as surface area, which we explore in Section 4.6), this form
of realism is hard to quantify. However, it can be
subjectively apparent. For example, in Figure 7(f), the
ability of our new algorithm to correctly generate a thin
shell, and particularly to do so with a smooth continuous
interface, is a strong example of its realism and minimal
introduction of artifacts compared to other algorithms.

Figure 8: Unstructured mesh ovoid reconstruction using
(a) PLIC (b) Isovolume (c) Equi-T (d) Equi-Z/i5.

Figure 8 explores these artifacts in three dimensions with
a deformed ovoid material in an unstructured grid. The
Discrete algorithm does not function on unstructured grids,
so we have not evaluated it here, but we note that all angles
in this algorithm will be 90 degrees, the worst possible.
Note again the sharp surface irregularities when using a
PLIC algorithm; these will be present on most nontrivial
problems. Isovolume is very smooth, but it achieves this
with a loss in volume fraction accuracy. The results from
our new algorithm highlight the importance of the clipping
variant: when element types are limited to tetrahedral cells,
it still exhibits surface artifacts (though less prominent than
PLIC). Allowed the full complement of primitive types, it
achieves results subjectively as artifact-free as Isovolume as
well as a more accurate (slightly larger) volume.

Figure 9 shows a hyper velocity impact of a large particle
upon several layers of shielding from the ALE3D
unstructured grid simulation code [ALE3D], decomposed
over 64 parallel computational domains. At this late time
step, the materials have become twisted and stretched under
high pressure, like turbulent fluids mixing. In panels (c)
through (f) we see a close zoom of the highlighted region to
examine fine scale details of the reconstruction algorithms.
Of course, the “correct” reconstruction is ill-defined,
although the PLIC algorithm is guaranteed to faithfully
represent each material in a given cell. However, the PLIC
algorithm introduces many jagged edges, creating sharp
features not implied by the data. Further, the Isovolume
algorithm creates large holes near the multi-material areas.
Our new algorithm produces very smooth results, though
without iteration it can miss many small pieces of materials.

Figure 10 shows “Rect3D”, a three dimensional regular

 J.S. Meredith and H. Childs / Visualization and Analysis-Oriented Reconstruction of Material Interfaces

grid data set comprising eight nested sphere materials, four
of which are visible on the outside faces as shown. We
expect perfect circular boundaries on these four material
spheres where they intersect the planar faces of the cube.
The PLIC algorithm again shows discontinuities at cell
boundaries. The Discrete algorithm results contain random
noise, even after long periods of iteration, and its realism at
material boundaries is limited by the quantization factor.
Isovolume generates smooth results but lacks inter-material
connectivity. Our new algorithm (when not restricted to
tetrahedral cells) generates smooth results and cohesive
external surfaces, both without and with iteration.

Figure 9: (a) Unstructured dataset from ALE3D simulation
showing material velocities. (b) Close-up of zoom region
showing velocities. Reconstructions shown in zoom region
are (c) PLIC, (d) Isovolume, (e) Equi-Z, (f) Equi-Z/i30.

4.5 Volume fraction accuracy
One metric is most often selected as foremost in

importance in interface reconstruction algorithms: their
ability to consistently reproduce the input volume fractions
as the correct volume in the output geometry for each cell.
While this capability often comes at the cost of others, the
degree to which the algorithms honor volume fractions is
nonetheless a useful metric, and so we examine it here.

Figure 10: “Rect3D” Regular grid data set of nested
spheres reconstructed with (a) PLIC (b) Discrete/10sec, (c)
Discrete/60sec, (d) Isovolume, (e) Equi-Z, (f) Equi-Z/i5.

For an initial study of volume fraction accuracy, we utilize
a straightforward 2D “Linear” test data sequence, a two-
material data set where a single-slope continuous linear
interface divides the entire problem, intersecting the central
cell of a small grid over a full range of slopes and volume
fractions (35 data sets in total). The results over this full
sequence of data are shown in Table 2. The PLIC algorithm
is obviously very strong, with error on the order of single-
precision floating point limits. The Discrete approach has
fixed error bounds depending on the chosen quantization
factor (15x15 here). As expected for a two material mixed
cell case, the Isovolume approach and our new algorithm
perform identically on this metric, with maximum errors of

 J.S. Meredith and H. Childs / Visualization and Analysis-Oriented Reconstruction of Material Interfaces

2.3% and a median error of 0.13%. Even with only two
iterations, our new algorithm improves even more, with
error dropping by about half, to a maximum of 1.0% and a
median of 0.072%. When our algorithm is restricted to
triangular output (with no iteration), it performs the worst,
with much larger errors (1.3% median and 3.4% max),
showing the importance of the approach to clipping.
 PLIC Discrete Isovol Equi-T Equi-Z Equi-Z/i2
Median 7.1e-7 2.4e-3 1.3e-3 1.3e-2 1.3e-3 7.2e-4
Maximum 1.6e-6 4.3e-3 2.3e-2 3.4e-2 2.3e-2 1.0e-2
Table 2: Volume fraction reconstruction error in the
central cell of the "Linear" data set sequence.

Figure 11: Close zoom of a blue circle against a green

background material reconstructed using (a) PLIC (b)
Discrete (c) Isovolume (d) Equi-T (e) Equi-Z (f) Equi-Z/i10.

We also use a “Circle” data sequence to examine the
behavior on ensemble data with nonlinear boundaries. This
is a two-material data set, where a unit circle of one
material is overlaid on a background material. This is a
sequence of data sets of varying resolution, ranging from a
10x10 to a 50x50 structured grid, and can be used to study
the convergence properties of the algorithms under
increasing resolution. Figure 11 shows a close-up of the
reconstruction of this dataset for each algorithm.

Figure 12: Area of a unit circle material sampled onto a
grid as reconstructed by each algorithm for a sequence of
increasing resolutions. The correct answer is !.

As the data represents a unit circle, it has a total area over
all cells of ! at any resolution. The area achieved by each
algorithm is shown in Figure 12. As expected, PLIC is
accurate with this metric, the Discrete algorithm has fixed
error bounds, and Isovolume and our new method without
iteration perform similarly as this is a two-material case.

Note that all algorithms do exhibit asymptotic convergence
to the correct volume fraction answer under increasing
resolution. The key feature to note here is the pronounced
effect our iteration scheme has on the volume fraction
accuracy; errors on the ensemble are noticeably improved
compared to what was achieved without iteration.

4.5.1 Volume fraction convergence

Figure 13: Relative error of material volume on the “50x50
Circle” test data set for various convergence parameters in
the Equi-Z/iterative algorithm.

In Figure 13 we investigate the convergence properties of
the Equi-Z algorithm under iteration on the Circle data set.
This test examines the summed error contributions over all
reconstructed cells. We see the combined relative error is
on the order of 10-3, and with iteration generally improves
by two orders of magnitude to 10-5. All damping factors
show similar total improvement here, with larger damping
factors simply converging more quickly. The convergence
rate here is up to one order of magnitude for each iteration.

Figure 14: Maximum relative error for any single cell in

the “Linear” test data sequence for various convergence
parameters in the Equi-Z/iterative algorithm.

Figure 14 shows the results from single-cell
reconstructions on the Linear data sequence. These results
show the maximum error for any linear interface
intersecting the cell of interest, generally converging to less
than 1%. Here we see a penalty for using a damping factor
that is too large: the 0.9 factor results in oscillations which
effectively negate the benefits of iteration.

 J.S. Meredith and H. Childs / Visualization and Analysis-Oriented Reconstruction of Material Interfaces

4.6 Surface accuracy
As mentioned, honoring volume fractions is often

considered the paramount metric in interface reconstruction
algorithms. However, preserving volume fractions does not
ensure a good reconstruction from an analysis perspective.
The role of material interface reconstruction algorithms in
analysis informs examples: How closely does our material
approximate a sphere? How compact is our material?
Where is its centroid? What is the moment of inertia? All
of these are dependent on a correct reconstruction of the
shape of the object. The surface area of our reconstructed
geometry, directly or indirectly, plays a role in the
calculation for each of these examples, and so we study it
here to provide a quantitative basis for this metric.

Figure 15: Perimeter of a unit circle material sampled onto
a grid as reconstructed by each algorithm for a sequence of
increasing resolutions. The correct answer is 2!.

We use our “Circle” test again to explore this metric, since
it has well known properties, and we can examine the
nature of surface area accuracy while being cognizant of the
volume fraction accuracy. Being a unit circle, it has a
known correct answer for surface area (perimeter in 2D) as
well: 2!. Figure 15 shows the surface area measurements
on this sequence of increasing resolution data sets. The first
result, the unmodified PLIC algorithm, is off the chart – this
is due to the connectivity problem discussed in section 4.2,
where adjacent cells do not have correct connectivity,
leading to duplicate geometry and a meaningless
measurement of surface area. We applied an algorithm to
remove the duplicate portions of this geometry, leading to
values which PLIC could theoretically achieve an in ideal
case, yet the results are still much higher than the correct
answer. This is due to interface mismatches at cell
boundaries, resulting in a jagged surface where small
discontinuities add up over the whole perimeter of the
circle. (Figure 11(a) shows this phenomenon using PLIC on
this data set.) Furthermore, the result does not appear to be
converging to the correct answer at higher resolutions; even
with a “perfect” choice of interface orientation, more cells
can simply lead to more wobbles, even if they are smaller.

The Discrete algorithm has a similar problem; its interface
is defined by small axis-aligned stair-stepped line segments,
and thus is at a disadvantage in this metric, generating a
surface perimeter far too large, also off the chart.

The other algorithms, due in part to their inherent
connectivity, perform better. Our new algorithm, even
without iteration, shows asymptotic convergence to the

correct answer, but only the Equi-Z variant. In contrast,
Equi-T, by being restricted to triangular primitives,
introduces small wobbles of its own, though they are less
pronounced than PLIC. When iteration is added, our new
algorithm outperforms all others at every resolution.

Figure 16 shows this from a different perspective by
quantifying the surface roughness on this Circle data
sequence. We know the sum of the exterior angles of a
closed polygon is 2!; however, a rougher surface will have
more negative angles where it is concave. As the data being
reconstructed represents a convex shape (i.e. a unit circle),
we expect no negative angles in a smooth reconstruction.
By summing the absolute value of these angles, we can
measure surface roughness as the amount by which this
summation is greater than 2!. Note that Equi-Z and
Isovolume achieve close to or exactly 2!, while Equi-T and
PLIC are significantly higher (note the logarithmic scale),
indicating a surface with more jagged and undulating edges.

Figure 16: Sum of absolute value of exterior angles in
Circle boundary at increasing resolutions. A convex
polygon has value 2!; each jagged edge results in a
negative angle, in turn resulting in an increase in this sum.

4.7 Memory complexity
Complex output geometry has consequences, from the

extra runtime in later analysis, to memory usage both during
and after reconstruction, to memory imbalances which can
affect scaling in a parallel setting. Here we measure this
output geometry complexity directly.

 PLIC
(orig)

PLIC
(ideal) Isovol Equi-T Equi-Z Equi-Z/i5

Polygons 2116 2116 2421 2245 2267 2116
Lines 592 383 332 429 350 367
Table 3: Average number of 2D polygons and lines created
in each domain for material 3 in the 2D ALE3D data set.

Table 3 shows the amount of geometry created during the
reconstruction on the 2D ALE3D data set. We select only
one material in order to enable fair comparisons with the
PLIC and Isovolume algorithms, which cannot generate
good connectivity between materials and would otherwise
be many times higher. By using this method we can note
that the PLIC algorithm does generate a slightly lower
number of cells due to its use of arbitrary polygons, but the
number of lines lying along the interface surface is
generally larger, even after applying a post-processing filter
to remove duplicate geometry. The extra subdivision of the
Equi-T algorithm, due to its restriction to triangular output
shapes, increases its number of surface lines beyond Equi-
Z, and the Isovolume algorithm is lowest at the cost of
inaccurate volume fractions in its reconstruction.

 J.S. Meredith and H. Childs / Visualization and Analysis-Oriented Reconstruction of Material Interfaces

 PLIC
(orig)

PLIC
(ideal)

Discrete
10sec

Discrete
60sec

Isovol Equi-
T

Equi-
Z

Equi-
Z/i5

Cells 13k 13k 1,029k 1,029k 38k 67k 64k 64k
Faces 75k 65k 373k 265k 20k 44k 22k 23k
Table 4: Number of volumetric cells and surface faces
created for material 3 in the 3D Rect3D data set. Note the
cells for PLIC are complex arbitrary polyhedra.

Table 4 shows the 3D equivalent of the same information
for the Rect3D data set, again selecting only one material to
enable fair comparisons for poor-connectivity algorithms.
The fixed subdivision in the Discrete approach causes an
explosion in the number of output cells and surface
geometry. We see PLIC has a benefit in terms of volumetric
cells due to its use of arbitrary polyhedra, but this does not
mean the geometry is strictly simpler; this can seen in the
number of surface faces being significantly larger than any
algorithm but Discrete, even with duplicate geometry
removed. We see again that Isovolume performs very well
on this metric, particularly in terms of number of faces.
Our new algorithm performs nearly as well, though we note
that the Equi-Z variants, both with and without iteration, are
improved over Equi-T, as the latter results in extra
subdivision from its use of only tetrahedral elements.

4.8 Reconstruction performance
We test performance using the two largest test data sets:

the “Rect3D” nested spheres 3D regular grid, and the 2D
unstructured data set from an ALE3D simulation, both with
eight total materials. See Section 4.4 for images and more a
detailed description of these data sets. These results were
generated on a 2.5GHz Intel Harpertown system with 8GB
RAM and GCC 4.2 with –O2 optimization.

PLIC Isovol Equi-T Equi-Z Equi-Z/i5
37.26 ms 67.57 ms 0.73 ms 1.39 ms 18.27 ms

Table 5: Median reconstruction runtime per domain on the
2D ALE3D simulation data set. The Discrete algorithm
was not tested as it only operates on structured meshes.

In Table 5 we see the time taken during the reconstruction
phase on the 2D ALE3D data set for each algorithm
supporting unstructured grids. Note that Isovolume is the
slowest, as it requires multiple passes to support many
materials. The variants of our new algorithm are the fastest,
though we note that the Equi-T version, being restricted to
triangular shapes, is simpler and faster. There is additional
cost associated with each iteration pass, but even with
iteration the absolute runtime of our algorithm is still a
significant improvement compared to the alternatives.

 PLIC Discrete
10sec Isovol Equi-T Equi-Z Equi-

Z/i5
Volumetric
reconstruction 7.31 s 9.95 s 2.08 s 0.16 s 0.13 s 0.93 s

Surface
extraction 6.02 s 2.39 s 0.09 s 0.16 s 0.12 s 0.13 s

Table 6: Runtime on Rect3D for both full 3D
reconstruction and extraction of surface geometry.

Table 6 shows the runtime on the Rect3D data set. Again,
even with multiple iterations, our new algorithm is the
fastest for reconstruction. Note that the tetrahedral 3D
Equi-T variant is more complex than its triangular 2D
equivalent, and also generates more cells, so here we see a

benefit by using the Equi-Z variant. Also, note that we
measured the performance for the Discrete algorithm, with
its dial-an-accuracy approach, at ten seconds, while we
noted in Figure 10 that even with a sixty second iteration
time there were still visible artifacts. The second row in
Table 6 shows the time to extract the surface geometry.
This depends on the complexity and number of output cells,
and so this measure can be indicative of performance for
other geometric visualization and analysis tasks occurring
after reconstruction. For this metric, the large number of
cells in the Discrete algorithm and the complexity of the
arbitrary polyhedra generated in the PLIC algorithm are
major reasons for their reduced performance. Though the
Isovolume approach is faster in this extraction phase, Equi-
T and Equi-Z are close behind. The combined
reconstruction time is thus significantly faster in our
proposed algorithm.
5 Conclusions and Future Work

In this paper, we present a new approach to material
interface reconstruction which improves upon existing
methods in several ways. First and foremost, it has correct
connectivity and supports multiple materials – features
which are critical for analysis and visualization. While
making no guarantees for reconstructed accuracy in volume
fraction, we have described an iteration technique which
largely addresses this problem. Additionally, we contend
that volume accuracy is only one of several accuracy
metrics critical for analysis; when measuring surface area,
for instance, other algorithms have severe accuracy
weaknesses in comparison with our technique. And finally,
our method has good performance on real data sets while
exhibiting good subjective realism and aesthetically
pleasing reconstructions due to its inherent smoothness and
material placement. Combined, this evaluation shows that
our approach to material interface reconstruction strikes a
favorable balance in the visualization and analysis-space.

We expect future work to focus on improvements to the
iteration scheme, such as material ordering, damping
factors, and potentially even local iteration modifications
which can provide accuracy guarantees. In addition, we
expect to more fully study the scalability on large data sets.
Acknowledgements

We thank John Anderson and Thierry Carrard, both of
whom implemented a material interface reconstruction
algorithm in VisIt which was used for comparison. We also
thank Rob Neely of the ALE3D team for providing example
data. Finally, we thank the anonymous reviewers, whose
comments greatly improved the accuracy, clarity, and
thoroughness of this paper.

This work was supported by the Director, Office of
Advanced Scientific Computing Research, Office of
Science, of the U.S. Department of Energy under Contracts
DE-AC05-00OR22725 and DE-AC02-05CH11231 through
the Scientific Discovery through Advanced Computing
(SciDAC) program's Visualization and Analytics Center for
Enabling Technologies (VACET). Accordingly, the U.S.
Government retains a non-exclusive, royalty-free license to
publish or reproduce the published form of this contribution,
or allow others to do so, for U.S. Government purposes.

 J.S. Meredith and H. Childs / Visualization and Analysis-Oriented Reconstruction of Material Interfaces

References
[AS07] AHN, H.T. & SHASHKOV, M. Multi-material

interface reconstruction on generalized polyhedral meshes.
Journal of Computational Physics 226, 2096-2132 (2007).

[ALE3D] ALE3D TEAM. ALE3D Home Page. At
https://wci.llnl.gov/codes/ale3d/

[Ams66] AMSDEN, A.A.. Particle-in-cell method for the
calculation of the dynamics of compressible fluids. LA-
3466, Los Alamos Scientific Lab., Univ. of California, N.
Mex. (1966)

[AGD*08] ANDERSON, J.C., GARTH, C., DUCHAINEAU,
M.A. & JOY, K. Discrete Multi-Material Interface
Reconstruction for Volume Fraction Data. Computer
Graphics Forum (Proc. of Eurographics/IEEE-VGTC
Symposium on Visualization 2008) 27, (2008).

[BL03] BANKS, D.C. & LINTON, S. Counting cases in
marching cubes: Toward a generic algorithm for producing
substitopes. Proceedings of the 14th IEEE Visualization
2003 (VIS'03) 8 (2003).

[BJH*00] BONNELL, K.S., JOY, K.I., HAMANN, B.,
SCHIKORE, D.R. & DUCHAINEAU, M. Constructing material
interfaces from data sets with volume-fraction information.
Proceedings of the conference on Visualization'00, 367-372
(2000).

[CBB*05] CHILDS, H., BONNELL, K., BRUGGER, E.,
MEREDITH, J., MILLER, M., WHITLOCK, B., MAX, N. A
contract based system for large data visualization.
Proceedings of the conference on Visualization, 2005. VIS
05. IEEE 191-198 (2005).

[HSS*97] HEGE, H.C., SEEBASS, M., STALLING, D. &
ZÖCKLER, M. A generalized marching cubes algorithm
based on non-binary classifications. ZIB Preprint SC 97–05
(1997).

[HN81] HIRT, C.W. & NICHOLS, B.D. Volume of fluid
(VOF) method for the dynamics of free boundaries. Journal
of Computational Physics 39, 201-225 (1981).

[LC87] LORENSEN, W.E. & CLINE, H.E. Marching cubes:
A high resolution 3D surface construction algorithm.
Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, 169 (1987).

[Mer04] MEREDITH, J. Material Interface Reconstruction
in VisIt, Nuclear Explosives Code Developers Conference,
'04. NECDC. (2004).

[NW76] NOH, W.F. & WOODWARD, P. SLIC/simple line
interface calculation. Lecture Notes in Physics 59, 330-340
(1976).

[OS88] OSHER, S. & SETHIAN, J.A. Fronts propagating
with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. Journal of Computational
Physics 79, 12-49 (1988).

[PY92] PARKER, B. & YOUNGS, D. Two and three
dimensional Eulerian simulation of fluid flow with material
interfaces. Third Zababakhin Scientific Talks. (1992).

[RBW99] ROBERTS, L., BRUGGER, E.S. & WOOKEY, S.G.
MeshTV: scientific visualization and graphical analysis
software. University of California Research Lab Report,

Lawrence Livermore National Laboratory, UCRL-JC-
118600 (1999).

 [VISIT2] VISIT TEAM. VisIt 2.0 Release Candidate. At
http://portal.nersc.gov/svn/visit/branches/2.0RC/.
(Note: see src/visit_vtk/lightweight/ClipCases.h for
clipping tables, src/visit_vtk/full/vtkVisItClipper.C
for the clipping implementation, and src/avt/MIR/ for the
material interface reconstruction implementations used
herein.)

[WS03] WU, Z. & SULLIVAN, J.M. Multiple material
marching cubes algorithm. International Journal for
Numerical Methods in Engineering 58, 189-207 (2003).

